Silicon Micro Vertex Detector

NSAC/DOE Review June 2, 2004

Wieman: 1 STAR

People involved

RNC Group

- Howard Wieman
- Hans-Georg Ritter
- Fred Bieser (Lead Electronic Engineer)
- Howard Matis
- Leo Greiner
- Fabrice Retiere
- Eugene Yamamoto
- Kai Schweda
- Markus Oldenburg
- Robin Gareus (Univ. of Heidelberg)

- LEPSI/IReS (Strasbourg)
 - Claude Colledani, Michel Pellicioli, Christian Olivetto, Christine Hu, Grzegorz Deptuch Jerome Baudot, Fouad Rami, Wojciech Dulinski, Marc Winter
- UCIrvine

٠

- Stuart Kleinfelder + students
- LBNL Mechanical Engineering
 - Eric Anderssen (consultation ATLAS Pixels)
 - Design works
- BNL Instrumentation Div (consulting)
- Ohio State U
 - Ivan Kotov

Heavy flavor in ultra-relativistic heavy-ion collisions

Heavy-quark energy loss

Heavy quarks radiate less energy than light quarks (prediction)

- Yield of charm and beauty (leading) hadrons less suppressed
- May be measured by D \rightarrow X+e- and B \rightarrow X+e-
 - Without vertex information systematic error from background subtraction

(Luminosity upgrade adds capability for this case)

Flow and thermalization

Flow: spectra and v₂ • electrons PHENIX 10% Central Au-Au - Hydro ···· PYTHIA pQCD **D** Mesons **B** Mesons 10⁻⁵ ⊧ **10**⁻⁶ 3 4 5 Transverse Momentum (GeV/c) n J. Nagle, S. Kelly, M. Gyulassy, S.B. JN, Phys. Lett. B 557, pp 26-32

Charm thermalization by chemistry

	e-p & e⁺ e⁻	Thermal
f(c→D⁰)	0.557	0.483
f(c→D⁺)	0.232	0.21
f(c→D _s ⁺)	0.101	0.182
$f(c \rightarrow \Lambda_c^+)$	0.076	0.080

Wieman: 5 STAR

Measuring heavy flavor with the μ Vertex detector

Goals

- Heavy flavor energy loss
 - Remove background
- Charm flow
 - Precise D⁰ spectra
 - D⁰ V₂
- Charm thermalization
 - Yield of D⁺, D_s⁺, Λ_c⁺ (challenging 3 body decays)

µVertex strategy

- Separate charm and beauty decay product from primary tracks
 - Typically $D^0 c\tau = 124 \mu m$
- µVertex requirement: a very good vertex resolution
 - Position resolution < 10 μm
 - Thickness < 0.2% of rad length to limit multiple scattering

STAR Micro Vertex Detector

- Two layers
 - 1.5 cm radius
 - 4 cm radius
- 24 ladders
 - 2 cm X 20 cm each
 - $< 0.2\% X_0$
 - ~ 100 Mega Pixels

Charm hadron reconstruction performances (figure of merit)

System	N events for 3 σ D ⁰ signal	$\begin{array}{l} \textbf{N events for 3} \\ \sigma \ D^+{}_s \ \textbf{signal} \\ \hline \textbf{In progress} \end{array}$
TPC+SVT	12.6 M	
TPC+SVT+TOF	2.6 M	~1,000 M (φ+π⁺)
TPC+SVT+ μ Vertex	100 K	~100 M (φ+π+)
TPC+SVT+ μ Vertex+TOF	10 K	~1 M (φ+π⁺)

Inner vertex detector in STAR

Conceptual design focused on rapid insertion and removal while preserving spatial mapping

End view showing 3 of 6 ladder modules

Wieman: 9 STAR

Support: Thin stiff ladder concept

- Under development
- Tested for thermal distortion
- Wind tunnel vibration tests

254 mm carbon composite (75 μm) Young's modulus 3-4 times steel

TV Holography from ATLAS, LBNL

Capacitive Probe Measurement of Ladder Displacement and Vibration

1.6 µm vibration

 Additional vibration measurements: High sensitivity accelerometer place of the STAR inner detector support structure

Sensors: Active Pixel Sensors

- Advantages
 - Precise
 - Can be thin
 - Rather fast
 - Low power
- Disadvantages
 - Small signal
 - Not that fast
 - New
 - Need R&D

Sensors: 2 generations

- 1st Generation: 5-10 ms readout time
 - MIMOSTAR1 designed by LEPSI/IRES (Strasbourg)
 - 640×640 pixel of 30 \times 30 μm^2 pitch
 - Purely analog
 - Parallel readout on-chip multiplexed to 2 kind of outputs
 - 1 × 100MHz driver
 - 10×10 MHz drivers

- 2nd Generation: Faster but need more R&D
 - R&D with UCIrvine and LEPSI/IRES
 - Improve charge collection
 - Photogate, Active reset, ...
 - Some digital processing
 - Up to cluster-finder?

Readout

- Analog to end of the ladder (~1 m away)
 - Challenge to drive analog signal at 100 MHz over 1m
- Piggy back chip
 - ADC and memory on a chip bounded to the pixel chip
- Analog Prototype with MIMOSA-5 Scheduled for Fall 04
 - To develop fabrication methods with aluminum cables and new small components

Summary

- The micro vertex greatly improves heavy flavor capability before and after luminosity upgrade
- Design work progressing on MAPS by LEPSI/IReS (the 1st generation sensor for STAR inner vertex
- Developing Readout approaches
- R&D for 2nd generation sensors by UCI/LBNL and LEPSI/IRes
- R&D mechanical concepts for detector support system
- Installation in 2008 or 2009

backup

Number of pixels	98,304,00
Pixel dimension	30 μm × 30 μm
Detector chip active area	19.2 mm × 19.2 mm
Detector chip pixel array	640 × 640
Number of ladders	24
Ladder active area	192 mm × 19.2 mm
Number of barrels	2
Inner barrel (6 ladders)	r = 1.5 cm
Outer barrel (18 ladders)	r = 4.5 cm
Frame read time	4 ms
Pixel read rate, after zero suppression	63 MHz
Ladder % X ₀	0.26%

Luminosity Au + Au	1×10 ²⁷ Hz/cm ²
dN/dη (min bias)	170
min bias cross section	10 barns
interaction diamond size, σ	30 cm

STAR Tracking Environment

	MVD Outer Layer	MVD Inner Layer
Radius	4.5 cm	1.5 cm
Hit Flux	4,300 Hz/cm ²	18,000 Hz/cm ²
Hit Density 4 ms Integration	17/cm ²	$72/cm^2$
Projected Tracking σ , 1GeV/c	180 μm	100 μm
Background Hit Assignment	3.3%	4.4%

	MVD Outer Layer	MVD Inner Layer
Radius	4.5 cm	1.5 cm
Hit Density Au +Au Central Collision	1.8/cm ²	$7.4/cm^2$
Projected Tracking σ, 1 GeV/c	180 µm	100 µm
Background Hit Assignment	0.3%	0.5%

MAPS Silicon Schedule (LEPSI/IReS)

Jan – May '04	Design MIMOSTAR-1 Prototype
Sept '04 – Jan '05	Test MIMOSTAR-1
Sept '04 – Mar '05	Design MIMOSTAR-2 final prototype
Oct '05	MIMOSTAR-2 chips on final ladder prototype
2006	Receive and test final sensors

Detector installation 2008

MIMOSTAR LEPSI/IReS for first generation STAR detector

- Based on MIMOSA-5, full wafer engineering run – significant readout infrastructure on chip
- LBNL test board works (Bieser and Gareus)
 - 2 by 2 cm MIMOSA-5 chip
 - LBNL development using 4 commercial 50 MHz 14 bit ADCs

MIMOSTAR Design

- 1.9cmX1.9cm active
- 30μmX 30μm pixels 409600 pixels/chip
- Continuous frame read at 4-8ms per frame
- 52 mW per chip
- Analogue readout options
 - Single fast option 50 to100 MHz
 - 10 at 10 MHz option

Advanced APS designs for generation 2

- Goal, increase speed with on detector chip zero suppress
 and by avoiding full frame readout
- Requires improvements in signal to noise
 - Noise sources
 - KTC reset noise
 - Fixed pattern noise, threshold variation, leakage current variation
- Programs at LEPSI/IReS
- Programs at UCI/LBNL (Stuart Kleinfelder, Yandong Chen)
 - Photogates
 - CDS clamp circuit
 - Active Reset

Photo gate purpose - addresses standard diode limitations

- Correlated Double Sample on chip
- Improved charge collection

Standard APS diode structure

STAR

Photo-gate geometry

- Large photo gate area for collection
- Transfer to small capacitance node

- Rapid insertion and removal
 - Rapid replacement insurance for beam excursion damage
- Minimum thickness: 50 Micron Si Detector 50 Micron Si Readout chip
- Air cooling
- Composite beam pipe?

Inner STAR model – SVT and micro-vertex

Cam driven iris concept for fast insertion and removal

material	X ₀ (cm)	material thickness (µm)	%X ₀
Beryllium (beam pipe)	35	500	0.14
Aluminum (conductors)	9.0	10	0.007
Silicon (detector + readout)	9.4	112	0.12
Kapton (cable)	35	170	0.05
Adhesive	35	85	0.024
Carbon Composite	28	174	0.062

50 µm Silicon

Thinned Silicon wire bonded to cable, both supported under tension

"Wind tunnel" tests in preparation for testing cooling and vibration stability

Wieman: 30 STAR

Ladders per Wafer	5
Ladders per Detector	24
Yield	60%
Number of Detector Copies	4
Number of Wafers	32
Wafer Cost Each	2-5 k\$
Wafer Costs	64-160 k\$
Mask Cost	150-200 k\$
Total	214-360 k\$

8 inch wafers 20 mm x 170 mm ladders

Cuts tuned by optimizing Signal²/Background

- Dca daughter > (200 μm momentum / 2GeV/c * 200 μm)
- Good quality TPC tracks
- D⁰
 - Decay length > 100 μ m
 - Cos(θ) > 0.96
 - Dca between daughters < 100 μ m
 - |Minv-1.865| < 2 σ = 40 MeV
 - |cos(θ*)| < 0.8

Heavy quark energy loss

- Energy loss smaller for heavy than light quarks due to
 - Dead cone effect
 - Ter-Mikayelian effect
 - Gluon radiation smaller in-medium than in vaccum (nucl-th/0305062)
- Heavy quark allow differential study of energy loss

Trigger on e+/e- from open beauty (charm?) and an up with mVortox

$B \rightarrow e^{+/-} + hadron + X$

- High pt e^{+/-} triggered by EMC
- Remove hadronic background by _ associating the e+/- with a hadron citat a displaced vertex

dca between primary vertex and h-e crossing point (mm)