Forward Physics at RHIC

- Introduction / Forward physics in hadron collider
- Do we understand forward particle production at hadron collider?
- Forward particle production as a probe of low-x gluons
 - Inclusive particle production at large rapidity
 - Correlations with mid-rapidity particles in p+p and d+Au
- Conclusions and outlook

L.C. Bland, BNL NSAC Subcommittee Review 2-6 June 2004

What are the physics opportunities which forward p+p and p+A measurements offer?

• Sizable spin effects are observed in large rapidity particle production in p_+p collisions at RHIC (and, at lower \sqrt{s})

• Multiple effects contribute to dynamical origin of analyzing power:

Transversity \otimes spin-dep'nt fragmentation (Collins) Spin-correlated k_T for initial-state quark (Sivers)

Can these effects be discriminated in future measurements?

 p_{\uparrow} +p→ π^{0} +X, < η_{π} >=3.8, √s = 200 GeV A^{CNI}=0.013) 70 π^0 mesons Total energy Collins Sivers Initial state twist-3 A_N (Assuming Final state twist-3 0.0 $\langle p_T \rangle = 1.0 \ 1.1 \ 1.3 \ 1.5 \ 1.8 \ 2.1$ 2.4 GeV/c -0.2^L0 0.2 0.4 0.6 0.8 XF STAR collab., PRL 92, 171801 (2004); hep-ex/0310058.

Forward π^0 production in hadron collider

QCD analog of low-x deep-inelastic scattering

• Large rapidity π production ($\eta_{\pi} \sim 4$) probes asymmetric partonic collisions

- Mostly **high-***x* **valence quark** + **low-***x* **gluon**
 - $0.3 < x_{a} < 0.7$
 - 0.001 < x_{g} < 0.1
- <z> nearly constant and high ~ 0.8

- Large-x quark polarization is known to be large from DIS
- Directly couple to gluons = A probe of low x gluons

 $\sigma_{\text{data}}/\sigma_{\text{pQCD}}$ appears to be function of $\theta,$ in addition to p_{T}

How can one infer the dynamics of particle production?

Inclusive π^0 cross section

At $\sqrt{s} = 200$ GeV and mid-rapidity, both NLO pQCD and PYTHIA explains p+p data well, down to $p_T \sim 1$ GeV/c, consistent with partonic origin Do they work for forward rapidity?

Z=-620cm

Di-photon Mass Reconstruction

- Pb-glass reconstruction (no SMD) Fiducial volume > 1/2 cell width from edge
- Number of photons found = 2 Energy sharing $z_{\gamma\gamma} = |E_1 E_2| / (E_1 + E_2) < 0.7$

Robust particle identification at large rapidity to very high energies using electromagnetic calorimetry

- Absolute gain determined from π^0 peak position for each tower
- gain calibration presently known to only $\sim 10\% \Rightarrow$ cross section in d+Au requires better calibrations (work is underway)

Forward π^0 Inclusive Cross Section STAR $\mathbf{p} + \mathbf{p} \rightarrow \pi^0 + \mathbf{X}$ √s = 200 GeV $E_{d}^{3}\sigma/dp^{3}$ (µb c $^{3}/GeV^{2}$ STAR data at .8 - hep-ex/0310058 3 - STAR Preliminary •⟨η⟩= 3.8 (PRL **92**, 171801 NLO pQCD calc. (2004); hep-ex/0310058) Kretzer F.F. • $\langle \eta \rangle$ = 3.3 (hep-ex/0403012, **Preliminary**) <η)=**3.8** NLO pQCD calculations at fixed η with equal factorization and renormalization scales = p_T 10 Normalization Solid and dashed curves differ Uncertainty = 17% primarily in the $g \rightarrow \pi$ 2.2 GeV/c 1.9 2.1 fragmentation function 10 2.8 3.0

STAR data consistent with Next-to-Leading Order pQCD calculations in contrast to data at lower \sqrt{s} (Bourelly and Soffer, hep-ph/0311110)

60

E₋ (GeV)

55

50

45

40

25

30

35

What about particle correlations?

65

PYTHIA: a guide to the physics

Why forward physics at RHIC?

Rapidity interval (forward + mid-rapidity) correlations

Broad rapidity range at STAR enables nearly complete coverage of recoil parton kinematics Wide acceptance mid-rapidity detector & unobstructed view at forward rapidity Spin effects with rapidity interval correlations? Nuclear enhancement of gluon field : A^{1/3}x ~ 6x (Au case)? • FPD: |η| ~ 4.0

- TPC and Barrel EMC: $|\eta| < 1.0$
- Endcap EMC: 1.0 < η < 2.0

• FTPC: $2.8 < |\eta| < 3.8$

Back-to-back Azimuthal Correlations

with large rapidity interval (Mueller-Navelet dijets)

- S = Probability of "correlated" event under Gaussian
- B = Probability of "un-correlated" event under constant
- $\sigma_{\rm s}$ = Width of Gaussian

PYTHIA (with detector effects) predicts

- **"S" grows with** <**x**_F> and <**p**_{T,π}>
- " σ_s " decrease with $\langle x_F \rangle$ and $\langle p_{T,\pi} \rangle$

PYTHIA prediction agrees with data

Larger intrinsic k_T required to fit data

Do we understand forward π^0 production at RHIC?

- NLO pQCD agrees with inclusive cross section measurement, unlike lower \sqrt{s} data
- **PYTHIA** (LO pQCD + parton showers simulation) agrees with inclusive cross section measurement, unlike lower \sqrt{s} data
 - PYTHIA says large x_F , large $\eta \pi^0$ come from $2 \rightarrow 2$ (& $2 \rightarrow 3$) parton scattering, with small contributions from soft processes
- Back-to-back large rapidity interval particle correlations agree with PYTHIA
 - \Rightarrow Forward π^0 meson production at RHIC energies comes from partonic scattering

d + Au: Possible Color Glass Condensate at RHIC?

d+Au Viewed Through Colored Glass

BRAHMS publication (<u>nucl-ex/0403005</u>)

- Dependence on
 - Pseudorapidity
 - Centrality
- Qualitatively consistent with CGC
- PHENIX
 - **Preliminary Result**
 - Consistent with trend observed by BRAHMS
 - Extends these measurements to Au fragmentation regime

d + Au: Possible Color Glass Condensate at RHIC? General expectations of CGC: τ related to rapidity of $\tau = \ln$ produced hadrons. Suppression of forward particle production R^{pA}tov D. Kharzeev, hep-ph/0307037 $Q_s(\tau)$ $Q_s^4(\tau)/\Lambda^2$ - Linear Non-linear 1.75 As y grows Ascaling 1.5 Color Glass Condensate 1.25 Parton Gas $\tau_{s}(k_{\perp})$ 0.75 Fixed η_{π} , as $E_{\pi} \& p_{T,\pi}$ grows 0.5 BFKL 0.25 k/Q_{s} DGLAP Fixed $\boldsymbol{p}_{T,\pi}$,as y grows Brahms data shows evidence ? $\ln Q^2$ (nucl-ex/0403005) 'Mono-jet" $\ln \Lambda^2$ $\ln k_{\perp}^{2}$ Edmond Iancu and Raju Dilute parton Venugopalan, hep-ph/0303204 P_{T} is balanced system by many gluons (deuteron) **D.Kharzeev, E. Levin, L. McLerran** gives

physics picture (hep-ph/0403271), but no quantitative predictions available (yet)

Dense gluon

field (Au)

→ Exploratory studies of large rapidity interval particle correlations at STAR

Large $\Delta \eta \pi^0$ +h[±] correlations

• Suppressed at small $\langle x_F \rangle$, $\langle p_{T,\pi} \rangle$

Consistent with CGC picture

 Consistent in d+Au and p+p at larger $\langle x_F \rangle$ and $\langle p_{T,\pi} \rangle$

as expected by HIJING

Conclusions

• Forward hadron production at hadron-hadron collider selects high-x quark + low-x gluon scatterings.

• Forward π^0 meson production at RHIC energies is consistent with partonic scattering calculations, unlike at lower \sqrt{s} .

• Analyzing power for forward π^0 mesons is large at RHIC.

• Large rapidity interval particle correlations in d+Au differ from p+p in a direction consistent with CGC picture.

 \Rightarrow More data with d(p)+Au (and quantitative theoretical understanding) is required to make definitive physics conclusions

Outlook for RHIC-I

in $p_{\uparrow}+p_{\uparrow}$ (transverse & longitudinal) and $p_{\uparrow}(d)+nucleus$

p+p/d+Au comparisons

- improve forward instrumentation at RHIC
- establish rapidity dependence of saturation scale
 - $\Rightarrow~\mathsf{R}_{\mathsf{d}(\mathsf{p})\mathsf{A}}$ measurements for heavy-flavor mesons and γ
 - \Rightarrow particle correlations over extended $\Delta\eta$ range

Spin asymmetries with polarized p+p

- > potential sensitivity to low-*x* ΔG via π^0 and γA_{LL} measurements
- \succ disentangle dynamical origin of large- $x_{\rm F}$ analyzing power
 - \Rightarrow Brahms measurement of A_N for large x_F charged pions

- $q + \overline{q} \rightarrow c + \overline{c}$ favored over $g + g \rightarrow g + g$ and $q + g \rightarrow q + g$ at large x_F
- no contribution from spin-dependent fragmentation (Collins effect)
- tests universality of spin / k_{\perp} correlated distribution functions (Sivers function): \Rightarrow compare $p_{\uparrow}+p$ to semi-inclusive DIS.

Forward Meson Spectrometer

Conceptual Design

TAR

Physics Motivation:

 probing gluon saturation in p(d)+A collisions via...

> Iarge rapidity particle production $(\pi^{0},\eta,\omega,\eta',\gamma,K^{0},D^{0})$ detected through all γ decays.

di-jets with large rapidity interval (Mueller-Navelet jets)

 disentangling dynamical origins of large $x_{\rm F}$ analyzing power in p_↑+p collisions.

(See also R. Debbe contribution on 6/4)

Backup slides

 \Rightarrow FPD position known relative to STAR

 \Rightarrow Detector resolution for particle correlation is good

Expectation from HIJING (PYTHIA+nuclear effects)

X.N.Wang and M Gyulassy, PR D44(1991) 3501

with detector effects

• HIJING predicts clear correlation in d+Au

• Small difference in "S" and "σ_s" between p+p and d+Au

• "B" is bigger in d+Au due to increased particle multiplicity at midrapidity

Why Consider Forward Spin Physics (A_{μ}) ?

 $x_1 \frac{\sqrt{s}}{2}$

• For large $x_{\rm F} = x_1 - x_2$, get kinematic selection of asymmetric partonic collisions.

> Assume collinear collisions and apply conservation of momentum

• Large $x_{\rm F}$ jet production primarily selects qg scattering from other subprocesses.

• charge-squared weighted quark polarizations (g_1/F_1) within the proton are large in the large-x valence region \Rightarrow large quark polarization to provide good 'analyzer' of gluon polarization.

η dependence of A_{LL} for inclusive γ production

• larger spin effects at more forward angles. Expect at even more forward angles that the *sensitivity* (convolution $\hat{a}_{LL} \otimes A_1^p$) will increase. Since large η probes small x_{gluon} , gluon polarization may decrease because of sharp increase of unpolarized gluon density as $x_{gluon} \rightarrow 0$.

• expect the $(\pi^0 + \eta^0)/\gamma$ ratio to be more favorable at forward angles than at midrapidity.

• expect sensitivity to gluon polarization for forward jet (as well as γ) production.

Identify/reconstruct high-energy $\pi^0 \rightarrow \gamma\gamma$ by measuring total energy (E_{tot}) in the calorimeter and the energy sharing ($z_{\gamma\gamma}$) and di-photon separation ($d_{\gamma\gamma}$) with a scintillator-strip shower maximum detector.

Additional energy is deposited in the calorimeter primarily from multiple π^0 's accompanying the leading π^0 . The forward jet manifests itself as a largemass tail in the M_{$\gamma\gamma$} distribution.

(Fig. 1 of hep-ex/0310058)

Run-2 Prototype FPD

Simulation of pEEMC in STAR

z_=(E1-E2)

Simulation of pEEMC (cont.)

Partonic Correlations from PYTHIA

Forward Physics at RHIC-II in $p_{\uparrow}+p_{\uparrow}$ (transverse & longitudinal) and $p_{\uparrow}(d)+nucleus$

- 'hard scattering' particle correlations spanning large rapidity difference
 - o flavor tagging of partonic scattering

o longitudinal/transverse spin effects, selected on Bjorken *x* values of colliding partons

- o probe rapidity dependence of saturation scale
- Large rapidity Drell-Yan (electroweak probes)
 - o quantify Sivers function (spin / k_{\perp} correlated distribution function)
 - o probe gluon saturation