The PHENIX Future Physics Program

Axel Drees, Stony Brook University NSCA review, 6/03/2004, BNL

Overview of physics goals Overview of PHENIX upgrades required Hard probes PID **Heavy flavor** γ-jet Low mass dileptons DAQ & 1st level trigger Summary **Expected physics performance Budget requirements and time lines** Conclusion

Physics Beyond Reach of Current PHENIX

Provide key measurements so far inaccessible at RHIC in three broad areas:

• Comprehensive study of QCD at high T with heavy ion, p-nucleus, and pp

- high p_T phenomena (identified particle, p_T>20 GeV/c and γ-jet tomography)
- electron pair continuum (low masses to Drell-Yan)

 requires highest
- heavy flavor production (c- and b-physics)
 AA luminosity
- charmonium spectroscopy (J/ ψ , ψ ', χ_c and Y(1s),Y(2s),Y(3s))
- Extended exploration of the spin structure of the nucleon
 - gluon spin structure ($\Delta G/G$) with heavy flavor and γ -jet correlations
 - quark spin structure ($\Delta q/q$) with W-production
 - Transversity

requires highest polarization and luminosity

- Dedicated p-nucleus program
 - A-, p_T-, x-dependence of the parton structure of nuclei
 - gluon saturation and the color glass condensate at low x

Requires upgrades of PHENIX and RIHC II luminosity

PHENIX Experiment

designed to measure rare probes:

Au-Au & p-p spin

2 central arms:

electrons, photons, hadrons

- charmonium J/ψ , $\psi' \rightarrow e^+e^-$
- vector meson ρ , ω , $\phi \rightarrow e^+e^-$
- high \mathbf{p}_{T} $\pi^{\mathrm{o}}, \pi^{+}, \pi^{-}$
- direct photons
- open charm
- hadron physics
- **2** muon arms: muons
 - "onium" J/ ψ , ψ ', Y -> $\mu^+\mu^-$
 - vector meson $\phi \rightarrow \mu^+ \mu^-$
 - open charm

+ high rate capability & granularity
+ good mass resolution and particle ID
- limited acceptance

Discovery potential of PHENIX demonstrated in Run's 1-4 Upgrades aim at precision measurements

PHENIX Central Arm Upgrades

- **Enhanced Particle ID**
 - **TRD (east)**
 - Aerogel/TOF (2006)

- **Vertex Spectrometer**
 - flexible magnetic field
 - VTX: silicon vertex tracker (2008)
 - HBD (2007) and TPC (2011)

PHENIX Forward Upgrade Components

Ongoing PHENIX Upgrades Program

Discovery potential of PHENIX demonstrated in Run's 1-4

- All upgrades utilize full strength of PHENIX experiment
 - Central arms & muon arms & DAQ/trigger
- Upgrades will be implemented in a staged approached
 - Implement upgrades year by year
 - Maintaining yearly operation and full physics output

Run 1	→ Run 2	→ Run 3	→ Run 4
	1 st μ-arm	completed	Aerogel & TRD
DAQ	20 MB/s		\rightarrow 500 MB/s

Realistic basis for future planning

• Actively recruiting new expert groups to PHENIX & RHIC

Probing Dense Matter with Hard Probes

Future steps to gain more detailed insight:high momentum PID K, π , p p_T range to 10 GeV/c \rightarrow Aerogel/ToFheavy flavor c, b \rightarrow VTX J/ψ , ψ ', χ c, Y(1s),Y(2s),Y(3s) \rightarrow RHIC II & VTX, & μ -trigger γ -jet tomography \rightarrow RHIC II & TPC & NCC

High p_T Particle Identification

		Pion-Kaon separation	Kaon-Proton separation	Combination of three PID detectors
TOF	σ~100 ps	0-2.5	-5	RICH with CO ₂ $\gamma_{th} \sim 34$ Aerogel Č, $\gamma_{th} \sim 8.5$
RICH	n=1.00044 γth~34	5 - 17 • • • •	17- 048	TOF σ ~ 100 ps π , K, p separation out to ~ 10 GeV/c
Aerogel	n=1.01 γth~8.5		5-9 4 8 1 1 1	coverage ~ 4 m ² in west arm

- Scope of PID upgrade:
 - Ongoing construction project
 - KEK, Tokyo, Vanderbilt, Dubna, BNL
 - 2 m² Aerogel Cherenkov installed 2004 completion 2005
 - New **TOF** detector based on **RPC's** prototypes under construction full installation by 2006

Physics from Precise Charm Measurements in Au-Au

Are there medium modifications for heavy quarks?

Is there pre-thermal charm production?

Does charm flow? Does charm suffer energy loss?

Thermal dileptons from the QGP

These measurements are not possible or very limited without the precise vertex tracking

Spin and pA Physics with Vertex Tracking

Extracting gluon structure function in nuclei, shadowing

Barrel VTX Detector Proposal Submitted to BNL

• Specifications:

- Large acceptance ($\Delta \phi \sim 2 \pi$ and $|\eta| < 1.2$)
- Displaced vertex measurement $\sigma < 100 \ \mu m$
- Charged particle tracking $\sigma_p/p \sim 5\% p$

Strip Detectors (80 $\mu m~x$ 3 cm) at R \sim 10 & 14 cm $\,$ -

Hybrid Pixel Detectors (50 μm x 425 $\mu m)$ at R \sim 2.5 & 5 cm

- VTX project
 - Detector system based on established technology ALICE Pixel detector & strips with SVX4 readout
 - Extensive R&D program mostly completed
 - Cost sharing DOE ~\$ 5.5M and RIKEN ~\$ 3M
 - Seek DOE construction funds FY06 through FY07
 - Proposal to BNL 65 authors from 14 institutes

(4 presently not members of PHENIX)

GEANT model

|η|<1.2

 $\phi \sim 2\pi$

 $z \le 10 \text{ cm}$

Completion of Vertex Tracker with Endcaps

Technology option:

- "mini" strips (~0.1 x 1 m²)
- **R&D** effort with FNAL initiated
- Expect ~1-2 year development
- requires sufficient R&D funds
- Proposal by early 2006
- Construction start FY07 or FY08
- Scope ~ \$6 M for two endcap's

Heavy flavor detection in PHENIX:

- Beauty and low p_T charm via displaced e and/or μ $\,$ -2.7<\eta<-1.2 , $|\eta|<\!0.35$, 2.7<\eta<\!1.2
- Beauty through displaced $J/\psi \rightarrow ee~(\mu\mu)$
- High p_T charm through $D \rightarrow \pi K$

-2.7< η <-1.2, $|\eta|$ <0.35, 2.7< η <1.2 -2.7< η <-1.2, $|\eta|$ <0.35, 2.7< η <1.2 $|\eta|$ <0.35

Jet Tomography of Quark Matter

Quark gluon Compton scattering:

γ-energy fixes jet energy γ & Jet direction fix kinematics

measure ∆E as function of: E, "L", flavor

Promising measurement in PHENIX:

present setup: excellent γ-measurement at mid rapidityfuture TPC:large acceptance for recoil jetfuture NCC:extends rapidity coverage to |y|<3</td>

Rate Estimates for γ **-jet Tomography**

Large Acceptance Tracker (TPC)

Inner tracker with fast, compact TPC

- $\Delta \phi \sim 2\pi$, $|\eta| < 1.0$ track projections, R=20cm 35cm R=55cm R=70cm 35cm **Drift regions TPC readout plane** With GEM detector
- Large acceptance tracker
- Excellent momentum resolution

 Δp/p~1% p
- May be combined with HBD

- **Status of TPC project**
 - Ongoing R&D with STAR and LEGS
 - Need sufficient funding to complete R&D
 - Expect proposal by 2007
 - Construction ~2-3 years starting FY09 depending on funding
 - Rough cost estimate ~\$6 M

Nosecone Calorimeter (NCC)

40cm

BD

- **Forward physics with PHENIX**
 - Large acceptance calorimeter
 - EM calorimeter ~40 X/X_o
 - hadronic section (1.6 λ/λ_0)
 - **Tungsten with Silicon readout**
- **Extended physics reach with NCC**
 - **Extended A-A program** high p_T phenomena: π^0 and γ -jet $\chi_c \rightarrow J/\psi + \gamma$
 - Small x-physics in d-A
- Scope
 - **Recently proposed to PHENIX collaboration**
 - New expert groups join R&D (MSU, Triest, Prag)
 - **Construction FY08 FY09**

W-silicon sampling calorimeter

BBC

BBC

 $0.9 < \eta < 3.0$

Low-Mass e⁺e⁻ Pairs at RHIC

Dalitz Rejection with a Hadron Blind Detector

• Construction FY05/06

Interaction Rates and DAQ Requirements

Au-Au at 200 GeV <l> (cm⁻² s⁻¹)</l>	Run 4 4 10 ²⁶	RHIC I 8 10 ²⁶		RHIC II 70 10 ²⁶
interaction rate	2 kHz	4 kHz (max 12 kHz)		40 kHz
p-p polarized	Run 4	RHIC I (200)	RHIC I (500)	RHIC II
<L $>$ (cm ⁻² s ⁻¹)	7 10 ³⁰	6 10 ³¹	1.5 10 ³²	5 10 ³²
Interaction rate (MHz)	0.2	2.0	6.0	20

PHENIX DAQ bandwidth:

8 kHz event rate (FEE limited) option to upgrade to ~ 20 kHz event by requires demultiplexing FEE; total cost \$1 M

Required rejection at 1 st level trigger:	RHIC I	RHIC II
Au-Au	none	2 - 5
pp (500)	250 – 800	800 - 2500

Replacement of some FEE may be required after 2010 Cost estimate ~ \$4 M

Example for First Level Triggering in the RHIC II Era

- Main physics goals: rare probes \rightarrow high momentum \rightarrow easy to trigger
- **RHIC II luminosity:** 1st level trigger rejection ~ 20 for 4 1st level triggers

PHENIX & PHENIX upgrades operational at RHIC II Iuminosities

Improved Muon Trigger

More details in K. Barish's talk

PHENIX Physics Potential with RHIC I & II

RHIC II Au-Au luminosity increase 10x (lifetime) + 2x (bunch length)

Physics topic		RHIC I (1.5 nb ⁻¹)	RHIC II (~30nb ⁻¹)	
High p _T	inclusive π ⁰ γ-jet (charged) γ-jet (energy)	$p_T < 20 \text{ GeV}$ $E_{\gamma} \sim 10 \text{ GeV}$ $E_{\gamma} \sim 10 \text{ GeV}$	$p_{T} > 25 \text{ GeV}$ $E_{\gamma} > 20 \text{ GeV} \text{ TPC/ VTX}$ $E_{\gamma} > 20 \text{ GeV} \text{ NCC/ FVTX}$	
Open heavy flavo	or $c \rightarrow e, \mu$ $b \rightarrow e, \mu$ $D \rightarrow \pi k$	$1 < p_T < 6 \text{ GeV}$ $1 < p_T < 6 \text{ GeV}$ $p_T < 4 \text{ GeV}$	$p_{T} > 6 GeV p_{T} > 6 GeV \mu-trigger$	
Charmonium	$J/\psi \rightarrow ee$ $\psi' \rightarrow ee$ $Y \rightarrow ee$ $J/\psi (\psi') \rightarrow \mu\mu$ $\chi \rightarrow \mu\mu$ $Y \rightarrow \mu\mu$ $B \rightarrow J/\psi \rightarrow \mu\mu$	38000 35	56000 2000 155 VTX/ TPC 760000 (28000) 760000 NCC 700 μ-trigger 30000 FVTX	
Lepton pairs LMR ρ,ω,φ Luminosity upgrade ne		75000 HBD 6000-8000 each ecessary	>50000 each	
ENIX Provides precision measurement		Requires PHENIX upgrade		

Conclusion

- RHIC is a world class QDC laboratory
 - High temperature QCD
 - Spin physics
 - Dedicated p-A program
- **RHIC II upgrade will allow to fully unfold physics potential**
- PHENIX ready to exploit these opportunities in timely a manner
 - Comprehensive upgrades program in place
 - Provide key measurement currently not accessible in all areas
 - Proposed detector upgrades are cost-effective
 - Sufficient R&D funds required in next 3 years
 - Staged implementation while maintaining strong physics output
 - Program has attracted many new groups to PHENIX & RHIC

BACKUP Slides

Questions of the Committee:

- Compare the physics reach with/without detector upgrades.
 Compare the physics reach of the baseline with/without luminosity upgrade.
 Summarize the physics payoff of each upgrade.
 What physics drives the higher luminosity for PHENIX?
 - ⇒ Answers compiled on summary slide 23
- **R&D** required for upgrades.

When needed compared to construction start?

\Rightarrow Time	schedule & costs on summary sli	ide 24
HBD:	readout electronics	FY04 (ongoing)
VTX:	strip readout with SVX4	FY04/05
FVTX:	mini strip readout chip	FY05/06
TPC:	GEM & readout electronics	next 3+ years to maintain collaboration
NCC:	Sensors, readout electronics	next 3 years to maintain collaboration
DAQ:	match new detectors	FY04 - FY08

Questions of the Committee:

- How long does it makes sense to run without a luminosity upgrade?
 - \Rightarrow difficult question ...
 - ⇒ without the baseline program will stretch out > 2015 (see PHENIX decadal plan)
 - ⇒ my personal opinion: till ~2008-10 when LHC becomes productive
- If the luminosity upgrade were advanced by two years, would that give RHIC more physics impact?
 - \Rightarrow definitely, but trade off with detector upgrades
 - ⇒ PHENIX can run at RHIC II luminosity today
 - ⇒ Much more time effective RHIC operation
 - ⇒ precision quarkonium physics (though limited resolution of Y-states)
 - ⇒ all detector upgrades will profit immediately
- Which upgrades are optimized for (or compatible with) Au+Au vs p+p running?
 - \Rightarrow HBD specifically for heavy ion program
 - \Rightarrow µ-trigger mandatory for spin physics with W's
 - \Rightarrow all other upgrades address AA, pp and p-A physics

Funding Profile of PHENIX upgrades

Funding sources for different upgrades

Project cost: ~\$38 M + \$5 M R&D (>6 years)

BNL base: \$2.5 M + \$1.5 M R&D HBD, Aerogel/ToF, (VTX), DAQ DOE: ~\$24-30 M including R&D

VTX, TPC, FVTX, DAQ, NCC

NSF: \$2 M μ-trigger Foreign contributions: \$ 4-10 MAerogel:US-Japan ~\$500kVTX:RIKEN: \$3 M + 0.5 M R&D

Seeking foreign funding for HBD, NCC, & DAQ

PHENIX Rate Estimates for γ-jet tomography

- Inclusive direct γ
 - Run 4 (on tape) out to >20 GeV (assume more than 10 event/bin)
- γ-jet rates
 - Need N_γ > 1000/pt-bin for statistical jet-correlation
 - Run 4 $E_{\gamma} \sim 6$ GeV (jet in central arm acceptance)
 - Ultimate RHIC I $E_{\gamma} \sim 12 \text{ GeV}$
 - RHIC II

 $E_{\gamma} \sim 23 \text{ GeV}$

- 10x Luminosity
- 2x IR diamond size
- **5x TPC** acceptance

Breakthrough to jet tomography requires RHIC II

Upsilon Spectroscopy with RHIC II Luminosity

- Assume RHIC II run with 30 nb⁻¹ & run 2 based reconstruction efficiency
 - Muon arms:

• Central arms:

total of ~150 $\Upsilon \rightarrow$ ee decays reconstructed original setup $\sigma_m \sim 170 \text{ MeV}$ upgraded setup $\sigma_m \sim 60 \text{ MeV}$

Upsilo	mass	Br(μμ)	relative	relative
n	(GeV)	%	cross section	Brσ
Y(1S)	9.460	2.48	1	1
Y(2S)	10.023	1.31	0.36	.19
Y(3S)	10.355	1.81	0.25	.18

 $\begin{array}{ll} \mbox{total of} ~~700~\Upsilon \rightarrow \mu\mu ~reconstructed decays \\ \mbox{north muon arm:} ~~\sigma_m \sim 190~MeV \\ \mbox{south muon arm} ~~\sigma_m \sim 240~MeV \end{array}$

