PHENIX highlights

Y. Akiba For PHENIX Collaboration

2004/06/02 NSAC Review

1

Run-1 to Run-4 Capsule History

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au p+p	200 200	24 μb ⁻¹ 0.15 pb ⁻¹	170M 3.7G	1.0 pb ⁻¹ 0.15 pb ⁻¹	10 TB 20 TB
03	2002/2003	d+Au p+p	200 200	2.74 nb ⁻¹ 0.35 pb ⁻¹	5.5G 6.6G	1.1 pb ⁻¹ 0.35 pb ⁻¹	46 TB 35 TB
04	2003/2004	Au+Au Au+Au	200 62	241 μb ⁻¹ 9 μb ⁻¹	1.5G 58M	10.0 pb ⁻¹ 0.36 pb ⁻¹	270 TB 10 TB

Published results

- 25 Publications to date •
- 15 PRL + 5 PRC +1 PLB published •
- 1 PRL accepted, 3 PRL in review •
- 3 papers with 100+ citations •
 - *First Measurement* of multiplicity vs centrality in Au+Au at 130 GeV
 - *Discovery* of high pT suppression in Au+Au at 130 GeV
 - *Discovery* of anomalous p/π ratio at high pt through systematic study of $\pi/K/p$ spectra in Au+Au at 130 GeV
- 6 more papers with 50+ citations ٠
 - First Measurement of E_T at 130GeV
 - *First measurement* of charm at RHIC at 130 GeV
 - *Extention* of the suppression measurement of high $p_T \pi^0$ at 200 GeV
 - Co-discovery of absence of suppression in d+Au at 200 GeV
 - Measurement of HBT in extended p_T range at 130 GeV
 - Measurement of Λ and anti- Λ at 130 GeV
- More than 1200 citations total ullet
- ~ 20 more papers in pipeline, including ullet
 - *First measurement* of direct photon in Au+Au collisions
 - *First measurement* of jet correlation with leading baryon in Au+Au collisions at 200 GeV

PHENIX White paper

- We are making assessment of our achievement in the first 4 years of RHIC/PHENIX
- White Paper Writing Group
 - Charge: Assessing the current PHENIX (and RHIC) data set and its implication for the discovery of a new state of matter
 - Members:

Y. Akiba (chair), S. Bathe (secretary), B. Cole, S. Esumi, B. Jacak,

- J. Nagle, C. Ogilvie, R. Seto, P. Stankus, M. Tannenbaum, I.Tserruya
- We are evaluating the implication of the data in terms of
 - Evidences for high density matter formation
 - Evidences for thermalisation
 - Hadronisaton process --- evidence for recombination?
 and
 - Evidence for QGP formation

$dE_{T}/d\eta$ and Bjorken Energy density

Bjorken energy density is a bench mark of the energy density achieved in heavy ion collisions.

- Bjorken energy density measured by PHENIX is 5.5 GeV/fm³ for τ_0 =1 fm/c. this is more than twice of the value at SPS (after proper corrections)
- $\epsilon_{Bj} >> 1 \text{ GeV/fm}^3 (\sim \epsilon_{crit})$ at RHIC except for the most peripheral collisions.
- Formation time $\tau > 2R/\gamma = 0.14$ fm/c at RHIC (1.7 fm/c at SPS)

Base line: Ncoll Scaling

Charm yield scales with Ncoll

Electron from charm decay in Au+Au @200 GeV Direct y from Au+Au @200GeV Elec. 0.1×10^{-3} 0.09 0.08 0.08PHENIX Preliminary PH ENIX Preliminary 10-20% Central 20-30% Central Integrated $0.8 < p_t < 4.0$ (GeV/c) 1+(Y_DOCD X N_COL) / Y_HCOL 1+(Y_{pocp} X N_{col}) / Y_{blod} centrality binned $0.906 < \alpha < 1.042$ min-bias A N^α_{coll} 90% C.L. 0.07 PHENIX Preliminary PHENIX Preliminary $^{\prime / \pi}_{
m background}$ 30-40% Central 40-50% Central 0.06 4 $1 + (\gamma_{p,QCD} \times N_{coll}) / \gamma_{bload}$ 1+(Ypocp X Ncol) / Ybkod 0.05 0.04 0.03 PHENIX Preliminary PH ENIX Preliminary 60-70% Central $\gamma/\pi_{measured}$ 50-60% Central 0.02 $1+(\gamma_{p,QCD} \times N_{coll}) / \gamma_{blogd}$ $dN/dy = A (N_{coll})^{\alpha}$ 1+(Ypocp X N_{cal}) / Ypkad 0.01 0 t 0 200 400 600 800 1000 1200 PHENIX Preliminary PHENIX Preliminary N_{coll} 80-92% Central 70-80% Central $1+(\gamma_{pOCD} \times N_{coll}) / \gamma_{blogd}$ 1+(γ_{pOCD} x N_{coll})// γ_{bled}

• PHENIX data show that the yield of point-like process with little final state effect scales with Ncoll, as expected

Direct photon scales with Ncoll

10 12 p_T (GeV/c)

p_T (GeV/c)

Jet quenching --- Formation of dense matter

- Discovery of high p_T suppression in Au+Au collision
- (Co-)discovery of absence of suppression in d+Au
- The effect is attributed to parton enery loss in the dense matter
- → Very strong evidence of *formation of a dense matter* at RHIC!

Suppression --- parton energy loss?

- Among the models in the market, the gluon radiation energy loss model by GRV explain the data very well.
- Models without energy losses are excluded
- The flat R_{AA} of the data excludes constant energy loss
- Need systematic error in theory curve
- The much higher p_T reach (~20 GeV/c) in RUN4 will further constraint the models

Comparison to model calculations with and without parton energy loss:

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

Evidence for Jets

- Two particle correlation shows jet-like structure in p+p, d+Au and Au+Au
- This is the direct evidence that the origin of high p_T particles are jets
- The width of away-side jet increase in central Au+Au collision, while the width of the near-side jet remain unchanged

Particle composition and spectra Evidence for thermalized final state

Elliptic Flow --- evidence for rapid thermalisation

- A very strong elliptic flow is observed at RHIC
- Elliptic Flow is stronger in RHIC energy than in lower energies, and it is close to "hydrodynamic limit"
- Strong elliptic flow is considered as a strong evidence for *rapid thermalisation* of matter created in the collision.

Success and failure of hydrodynamics

- Hydrodynamics model well reproduces v2 of $\pi/K/p$ measured by PHENIX
- But it failed to reproduce the HBT measurement
- PHENIX data provides strong constraint on the models

Anomalous p/π ratio

- Another discovery: anomalous p/π ratio in intermediate pt (2 4 GeV/c)
- The large p/π ratio can not be explained by usual fragmentation mechanism
- The cause is not the mass --- ϕ behaves like pion, not like proton
- This surprising PHENIX data inspires "recombination models"

Is Recombination the answer?

Recomb. Models explain large p/π

Summary

- Large amount of data have been collected and analyzed by PHENIX in the first four years of RHIC operation
- Evidence for high densities (high p_T suppression): *very strong* (Control measurement of d+Au essential supporting piece of evidence)
- Evidence for bulk behavior (flow, thermalization): *strong*
- Anomalous p/π ratio and scaling of v2 can be interpreted as recombination of quarks, but Jet correlation is a challenge to this class of models.
- What remains in the *discovery phase* Experimental side:
 - J/ Ψ , energy loss of charm, charm flow, R_{AA} at higher p_T, detailed Jet tomography, direct photon, gamma+jet, thermal radiation, ...
 - Systematic study (Energy scan and species scan)

Theory side:

- (Much) more robust *quantitative* understanding
- Quantitative understanding of "failures" (e.g., HBT)

Brazil	University of São Paulo, São Paulo DH	
China	Academia Sinica, Taipei, Taiwan	^
	China Institute of Atomic Energy, Beijing	
	Peking University, Beijing	
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
	Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
	SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest	
	Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	
	Kyoto University, Kyoto	1:
	Nagasaki Institute of Applied Science, Nagasaki	-
	RIKEN, Institute for Physical and Chemical Research, Wako	
	RIKEN-BNL Research Center, Upton, NY	JS/
	University of Tokyo, Bunkyo-ku, Tokyo	
	Tokyo Institute of Technology, Tokyo	
	University of Tsukuba, Tsukuba	
	Waseda University, Tokyo	
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
	Kangnung National University, Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat. University, Seoul	
	Yonsei University, Seoul	
Russia	Institute of High Energy Physics, Protovino	
	Joint Institute for Nuclear Research, Dubna	
	Kurchatov Institute, Moscow	
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg	g
	St. Petersburg State Technical University, St. Petersburg	
Sweden	Lund University, Lund	

12 Countries; 57 Institutions; 460 Participants*

ISA	Abilene Christian University Abilene TX				
	Brookhaven National Laboratory, Upton, NY				
	University of California - Riverside, Riverside	e, CA			
	University of Colorado, Boulder, CO				
	Columbia University, Nevis Laboratories, Irv	ington, NY			
	Florida State University, Tallahassee, FL	3			
	Georgia State University, Atlanta, GA				
	University of Illinois Urbana Champaign, Urbana-Champaign, IL				
	Iowa State University and Ames Laboratory,	Ames, IA			
	Los Alamos National Laboratory, Los Alamo	s, NM			
	Lawrence Livermore National Laboratory, Liv	vermore, CA			
	University of New Mexico, Albuquerque, NM	Constanting of the second			
	New Mexico State University, Las Cruces, NM	Λ			
	Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY				
g	Dept. Phys. and Astronomy, Stony Brook Un	iv., Stony Brook, NY			
	Oak Ridge National Laboratory, Oak Ridge, 1	N			
	University of Tennessee, Knoxville, TN				
	Vanderbilt University, Nashville, TN	*as of July 2002			

Run-1 Publications

- "Centrality dependence of charged particle multiplicity in Au-Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 86 (2001) 3500 100+
- "Measurement of the midrapidity transverse energy distribution from $\sqrt{s_{NN}} = 130$ GeV Au-Au collisions at RHIC" PRL 87 (2001) 052301 50+
- "Suppression of hadrons with large transverse momentum in central Au-Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 88, 022301 (2002) 100+
- "Centrality dependence of $\pi^{+/-}$, K^{+/-}, p and pbar production at RHIC" PRL 88, 242301 (2002) 100+
- "Transverse mass dependence of the two-pion correlation for Au+Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 88, 192302 (2002) 50+
- "Measurement of single electrons and implications for charm production in Au+Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 88, 192303 (2002) 50+
- "Net Charge Fluctuations in Au+Au Interactions at $\sqrt{s_{NN}} = 130$ GeV," PRL 89, 082301 (2002)
- "Event-by event fluctuations in Mean p_T and mean e_T in sqrt(s_NN) = 130GeV Au+Au Collisions" PRC 66, 024901 (2002)
- "Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 89, 212301 (2002)
- "Measurement of the lambda and lambda^bar particles in Au+Au Collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PRL 89, 092302 (2002) 50+
- "Centrality Dependence of the High pT Charged Hadron Suppression in Au+Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$ " PLB561, 82 (2003)
- "Single Identified Hadron Spectra from $\sqrt{s_{NN}} = 130$ GeV Au+Au Collisions" PRC 69, 024904(2004)

Run-2 and Run-3 Publications

RUN-2

- "Suppressed π^0 Production at Large Transverse Momentum in Central Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ " PRL 91, 072301 (2003) 50+
- "Scaling Properties of Proton and Anti-proton Production in $\sqrt{s_{NN}} = 200$ GeV Au+Au Collisions" PRL 91, 172301 (2003)
- "J/psi production from proton-proton collisions at $\sqrt{s} = 200 \text{ GeV}$ " PRL92, 051802 (2004)
- "J/Psi Production in Au-Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at the Relativistic Heavy Ion Collider" PRC69, 014901 (2004)
- "Elliptic Flow of Identified Hadrons in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}^{\circ}$ PRL91, 182301 (2003)
- "Midrapidity Neutral Pion Production in Proton-Proton Collisions at $\sqrt{s} = 200 \text{ GeV}^{"}$ PRL91, 241803 (2003)
- "Identified Charged Particle Spectra and Yields in Au-Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}^{"}$ PRC 69, 034909 (2004)
- "High-pt Charged Hadron Suppression in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ Gev}$ " PRC69, 034910 (2004)
- "Measurement of Non-Random Event-by-Event Fluctuation of Average Transverse Momentum in $\sqrt{s_{NN}} = 200 \text{ GeV}$ Au+Au and p+p collisions" puel ex/0210005 Accented for publication in PRI
 - nucl-ex/0310005. Accepted for publication in PRL.
- "Bose-Einstein Correlations of Charged Pion Pairs in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ " nucl-ex/0401003. Submitted to PRL
- "Deuteron and antideuteron production in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ " Submitted to PRL today
- RUN-3
- "Absence of Suppression in Particle Production at Large Transverse Momentum in $\sqrt{s_{NN}} = 200 \text{ GeV d}+\text{Au Collisions}$ ", PRL 91, 072303 (2003) 50+
- Double Helicity Asymmetry in Inclusive Mid-Rapidity p0 Production for Polarized p+p Collisions at $\sqrt{s} = 200$ GeV hep-ex/0404027, submitted to PRL

Accomplishments and Discoveries

- First measurement of the dependence of the charged particle pseudo-rapidity density and the transverse energy on the number of participants in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV.
- Discovery of high p_T suppression in π^0 and charged particle production in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV and a systematic study of the scaling properties of the suppression; extension of these results to much higher transverse momenta in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- (Co)-Discovery of absence of high p_T suppression in d+Au collisions at $s_{NN} = 200 \sim \text{GeV}$.
- Discovery of the anomalously large proton and anti-proton yields at high transverse momentum in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV through the systematic study of π^{\pm} , K^{\pm} , p^{\pm} spectra; measurement of Λ and anti- Λ in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV; study of the scaling properties of the proton and anti-proton yields in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
- Measurement of HBT correlations in $\pi^+ \pi^+$ and $\pi^- \pi^-$ pairs in Au+Au collisions at $\sqrt{s_{NN}} = 130 \text{ GeV}$, establishing the ``HBT puzzle" of $R_{OUT} \sim R_{SIDE}$ extends to high pair momentum; extension of these results to $\sqrt{s_{NN}} = 200 \text{ GeV}$
- First measurement of single electron spectra in Au+Au collisions at $\sqrt{s_{NN}} = 130$ ~GeV, suggesting that charm production scales with the number of binary collisions.
- First measurement of direct photon in Au+Au collisions at 200 GeV
- Sensitive measures of charge fluctuations and fluctuations in mean p_T and transverse energy per particle in Au+Au collisions at at $\sqrt{s_{NN}} = 130 \sim \text{GeV}$.
- Measurements of elliptic flow for charged particles from Au+Au collisions at $\sqrt{s_{NN}} = 130$ ~GeV and identified charged hadrons from Au+Au collisions at $\sqrt{s_{NN}} = 200$ ~GeV.
- Measurements of jet correlation in p+p, d+Au, and Au+Au collisions
- First easurements of jet correlation with particle identification in Au+Au collision
- Extensive study of hydrodynamic flow, particle yields, ratios and spectra from Au+Au collisions at $\sqrt{s_{NN}}$ =130 GeV and 200 GeV.
- First observation of J/ Ψ production in d+Au, and Au+Au collisions at $\sqrt{s_{NN}} = 200 \sim \text{GeV}$.
- Measurement of crucial baseline data on π^0 spectra and J/ Ψ production in p+p collisions at $\sqrt{s_{NN}} = 200 \sim \text{GeV}$.
- First measurement of A_{LL} of π^0